Basics of Urban Wind Sheltering and Infiltration

By: Saber Khoshdel Nikkho

IBPSA-MD and BEC-Baltimore Joint Meeting

Energy Modeling in Research and Design

Research Presentation

April 18th, 2017

Preface

- Former graduate student at CITY@UMD under supervision of Dr. Jelena Srebric, Mechanical Engineering Department, University of Maryland, College Park
- Currently serving as a Building Performance Consultant at the Affiliated Engineers Inc./AEI, Rockville office
- This research is part of a sponsored National Science Foundation project. The results are published at:
 - S. Khoshdel Nikkho, M. Heidarinejad, J. Liu, and J. Srebric, *Quantifying the impact of urban wind sheltering on the building energy consumption*, Applied Thermal Engineering Journal, Volume 116, April 2017, Pages 850–865
- Degrees and certifications:
 - Master's, Mechanical Engineering, University of Maryland, 2016
 - Bachelor's, Mechanical Engineering, Sharif University of technology, 2014
 - LEED AP Building Design and Construction
 - Engineer-In-Training

Building Energy Consumption in the US

- Buildings consume 41% of total primary energy in the US
- About half of this energy is consumed for Heating, Ventilation, and Air Conditioning (HVAC)

World Urbanization

• The world is rapidly urbanizing

The world's urban and rural population, 1950-2050 (United Nations Report, 2014)

Building Energy Models and Urban Environment

- Building Energy Modeling (BEM): Physics-based calculation of building energy consumption
- Common approaches of BEM have limited functionality to take surrounding urban environment into account

Problem Statement:

Currently, the common approaches of building energy modeling do

not consider urban neighborhoods

Research Gap

- Local wind flow have multiple impacts on building energy consumption
 - Convective Heat Transfer Coefficient (CHTC)

$$Q_{c} = h_{c,ext} A (T_{surf} - T_{air})$$
$$h_{c,ext} = D + EV_{z} + FV_{z}^{2}$$

Infiltration

Infiltration

 $= (I_{design})(F_{Schedule})[A + B|\Delta T| + C(WindSpeed) + D(WindSpeed^{2})]$

• The wind speeds used in the energy models are based on input weather data files derived from weather stations mainly located at airports

Thesis Objectives

- Develop the framework
- Create CFD airflow model
- Create energy model

 On-site temperature measurements Comparison with CFD
Validation with

Objective 2

 Validation with temperature

- Adjusting weather data by local wind
- Energy model calibration
- Local wind effects

¢FLIR

Combining CFD and Energy Model

- 8 CFD cases for main principal directions
- 1m/s inlet velocity
- Measurement at windward facade, target building

- Wind multiplier calculation
- Taking hourly weather data (energy model input)

Target building

- Adjusting the wind velocity in weather data by wind multipliers
- Effects of adjusted wind in energy model

Software Packages

- Open Source software packages are preferred to advance state of urban environment simulations
- Building energy balance: EnergyPlus
- CFD: **OpenFOAM** Open√FOAM
- Virtual PULSE

CFD Validation, OpenFOAM

Case setup for 6/24/2014 at 1pm
Inlet temperature: 28.2°C (82.8°F)
Inlet wind velocity: 5 m/s (3.3 ft/s)

buoyantBousinesqSimpleFoam solver

Introduction

CFD Validation, Instrumentation

- Temperature measurements around Mitchell building on UMD campus
- iButton sensors, accuracy ±0.5°C
- IR Photos using FLIR E40 camera

CFD Validation, On-site measurements

Location of iButton sensors Temperature measurements 8 locations at 1m, 1.5m, 2m June 2014

CFD Validation, Comparison, Air Temperature

Wind-focused Study, Baseline Energy Model

 Virtual PULSE, EnergyPlus model inputs for Mitchell building

Building parameters	Baseline energy model inputs
Geometry and shape	T shape 4 floors Floor to floor height: 3m (10 ft)
Information	Year built: 1958 Type: office Weather: AMY College Park, MD 2014
Construction	DOE Ref Pre-1980
Spaces	Window to wall ratio: 33% Thermal zones : perimeter and core zoning with single space type Perimeter zone depth: 3m (9.8 ft)
Loads	Lighting: 20 W/m ² Electric equipment: 10 W/m ² Infiltration: 0.002 m ³ /m ² s of exterior surface area (0.4 cfm/ft.min)
HVAC	Rooftop VAV with reheat DX for cooling District heating Fan efficiency: 70% Ventilation: 0.06 cfm/ft ² + 5 cfm/person
Simulation result	Area: 4217 m ² (45400 ft ²) Actual area: 4200 m ² (45212 ft ²) EUI: 1135 MJ/m ² (100 kBtu/ft ²) Actual EUI: 854 MJ/m ² (75.2 kBtu/ft ²)

Wind-focused Study- Energy Model Calibration

• Calibrating main parameters: Schedules + Infiltration

Calibration modification	Parameters
People	0.04 people/m ² 0.3 fraction radiant
Schedules	Shorter working hours based on heat maps Modified temperature setbacks
Infiltration	Design Flow Rate Model by medium office coefficients: 0.002 m ³ /m ² s per exterior surface area (0.4 cfm/ft.min) Coefficients (Lisa C. Ng, 2015): Constant term: 0.0 Temperature term: 0.0138 Wind velocity term: 0 Wind velocity squared term: 0.0315

Need for wind multipliers to calibrate

the building energy model

Wind-focused Study, Wind Multipliers

- Rotating Mitchell neighborhood in 8 main principal wind directions
- OpenFOAM CFD cases
- Iso-thermal, simpleFOAM solver
- Measurement at windward facade of Mitchell building
- 10m height, 5m away from the facade

Results

Wind-focused Study- Energy Model Calibration

СІТҮ @ UMD

Environme

Monthly Electric Use at Mitchell Building in 2013 and 2014

Monthly Steam Use at Mitchell Building in 2013 and 2014

Local Wind Effect on Peak Cooling and Sensible Gains

Conclusions

- In the case study, considering adjusted wind velocity in energy model using wind multipliers led to:
 - 5% decrease in total building EUI
 - No significant effect on HVAC design
 - Considerable effect in calibration of end-uses
- Direct effect of the local wind on infiltration
- Indirect effect of local wind on convection due to the conduction
- Lower wind speeds in urban areas results in less infiltration

Questions?

