

Actionable Steps Using MEP to **Reduce Transmission Rates**

3/18/2021 Provider #E130 David Van der Vossen, PE, CGD, LEED AP

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Acknowledging that COVID-19 is primarily transmitted as an airborne virus, the course will review how can MEP design help reduce those risks. We provide a base understanding of how we catch viruses including COVID-19 and review actionable items for reopening and long term strategies for pathogen control.

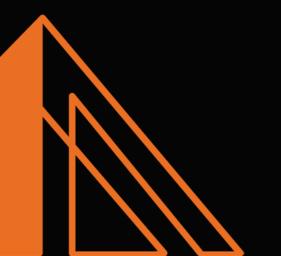
Learning Objectives

At the end of this course, participants will be able to: - Understand the three primary transmission methods of COVID-19 & typical preventative measures

- control including Air Sanitization
- Pathogen control

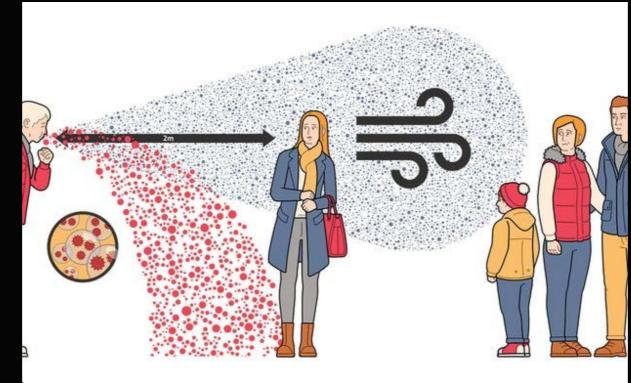
- Understand infectious dose & viral load - Understand short term HVAC approaches to reduce transmission to include ventilation & filtration - Understand long term solutions for Pathogen

- Understand other MEP design contributors to



How long has the building/space been empty?

FLUSH.

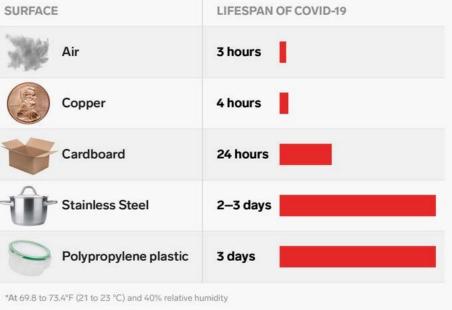

hot & cold water, water heaters, decorative fountains, ice makers

https://www.cdc.gov/coronavirus/2019-ncov/php/building-water-system.html

Transmission Methods

- Fomite Transmission Touching Surfaces Droplets – close contact person to person
- Aerosols– airborne longer distances

Address each transmission method


Fomite Transmission – Touching Surfaces

- Touchless systems & devices
- Handwashing
- Hand sanitizer
- Material selection
- Clean and disinfect surfaces

"isn't thought to be the main way the virus spreads"

https://www.cdc.gov/media/releases/2020/s0522-cdc-updates-covid-transmission.html

How long COVID-19 can live on common surfaces*

Source: New England Journal of Medicine

BUSINESS INSIDER

Pathogen	Potential length of survival on dry inanimate objects / surfaces			
Campylobacter	1-4 hours ⁹			
Candida albicans	1-120 days ¹⁰			
Cold virus	7+ days ⁹			
Clostridium difficile (spores)	5 months ¹⁰			
E.Coli	1.5 hours-16 months ¹⁰			
Flu virus	24 hours ⁹			
Herpes virus	Up to 7 days ¹⁰			
HIV	1+ week ¹⁰			
Listeria spp. (which causes listeriosis)	1 day-months ¹⁰			
Mycobacterium tuberculosis	1 day-4 months ¹⁰			
Staphylococcus aureus (including MRSA)	7 days-7 months ¹⁰			
Salmonella typhimurium	10 days-4.2 years ¹⁰			
https://aestheticsjournal.com/feature/infection-control				

Droplets – Close Contact – Person to Person

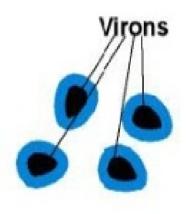
- 6' Spacing
- Masks
- Acrylic screens
- Cover coughs & sneezes
- Single directional travel
- Orientation of desks
- Room limits

How far can Airborne Viruses Travel?

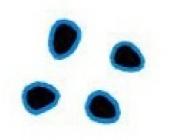
- 1. Coughing
- 2. Sneezing
- 3. Singing, T
- 4. Mouth Bre
- 5. Diarrhea*

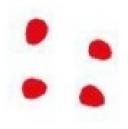
*As a Result of Toilet Water Aerosolization and Mechanical Fan Dispersion into outdoor air (2003 Hong Kong SARS Virus Epidemic) Source: https://www.slideshare.net/anjumhashmi61/h1-n1-influenza-virus-its-transmission-indoor-air-role-hvac

Large	/Small Droplets 1-5 feet	Droplet Nuclei 160+ feet
J	8-15 feet	160+ feet
Talking	1-3 feet	160+ feet
eathing	1-3 feet	160+ feet
*	5 feet+	160+ feet


Aerosols – Virons – Droplet Nuclei - Micro Droplets

- Open letter to WHO 7/20
- 238 researchers
- Super-spreader events
- Expelling virus particles
 - Breathing
 - Talking/Singing
 - Exercise
 - Coughing
 - Sneezing


https://academic.oup.com/cid/article/doi/10.1093/cid/ciaa939/5867798?searchresult=1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798362/


Stages of Infectious Droplets & Droplet Nuclei

Large Infectious droplets Small Infectious droplets Infectious Droplet Nuclei

 Mucus/water encased Viruses are aerosolized by the infector or by toilet water. These quickly fall to the ground after traveling up to 1-3 feet.

- Mucus/water coating starts to evaporate. These will travel 3-5 feet before falling to the ground. These droplets can become droplet nuclei.
- Mucus/water coating has totally evaporated leaving only the viron. This is a Droplet Nuclei. Droplet Nuclei are so microscopic that they can float in the air indefinitely.

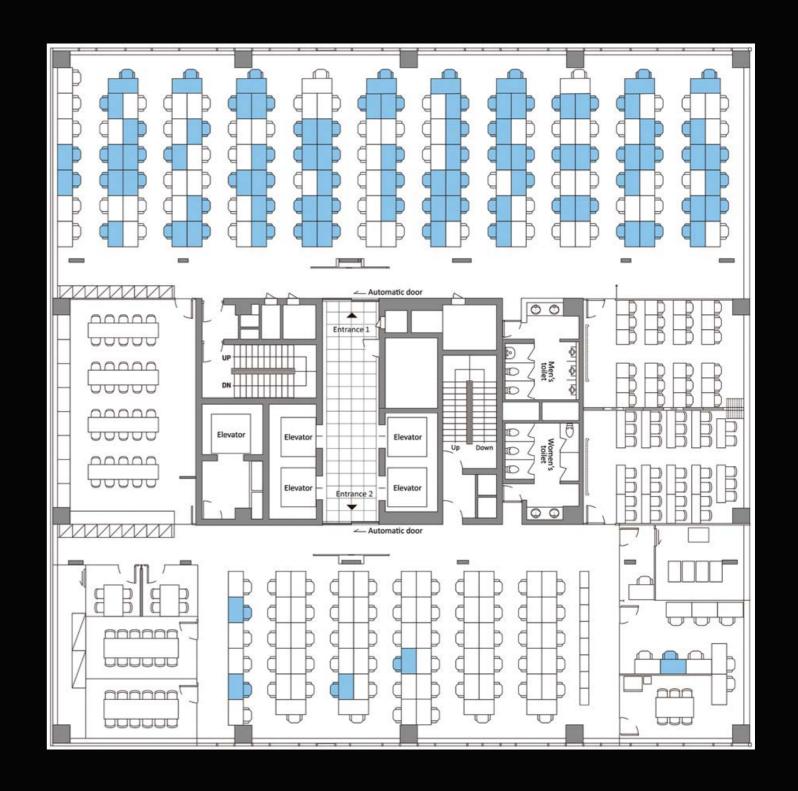
Infectious Dose Level & Viral Load

- Infectious Dose Level Estimates Viral Load
- Exposure duration and density

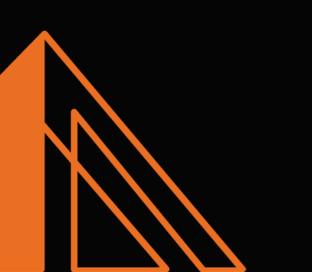
https://www.medrxiv.org/content/10.1101/2020.05.21.20108894v1.full.pdf https://www.erinbromage.com/post/the-risks-know-them-avoid-them https://www.sciencemediacentre.org/expert-reaction-to-questions-about-covid-19-and-viral-load/ https://www.newscientist.com/article/2238819-does-a-high-viral-load-or-infectious-dose-make-covid-19-worse/ https://www.webmd.com/lung/news/20201105/dose-of-coronavirus-timing-matters-for-infection#2

Case Study – Washington Choir Practice

- March 10, 2020
- One Carrier
- 61 people
- 2.5 hr practice
- 52 new cases
- No physical contact reported

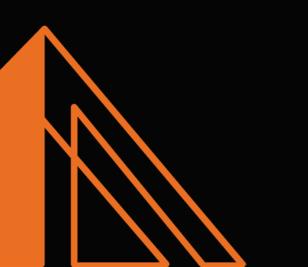

https://www.cdc.gov/mmwr/volumes/69/wr/mm6919e6.htm

Case Study – South Korean Call Center


- February/March, 2020
- 19 Story Building
- 811 employees over 3 floors
- 1,143 people tested
- 97 confirmed cases
- 94 on the same floor (216 emp)
- "duration of interaction was likely the main factor"

https://wwwnc.cdc.gov/eid/article/26/8/20-1274_article

What Are We Trying To Do?

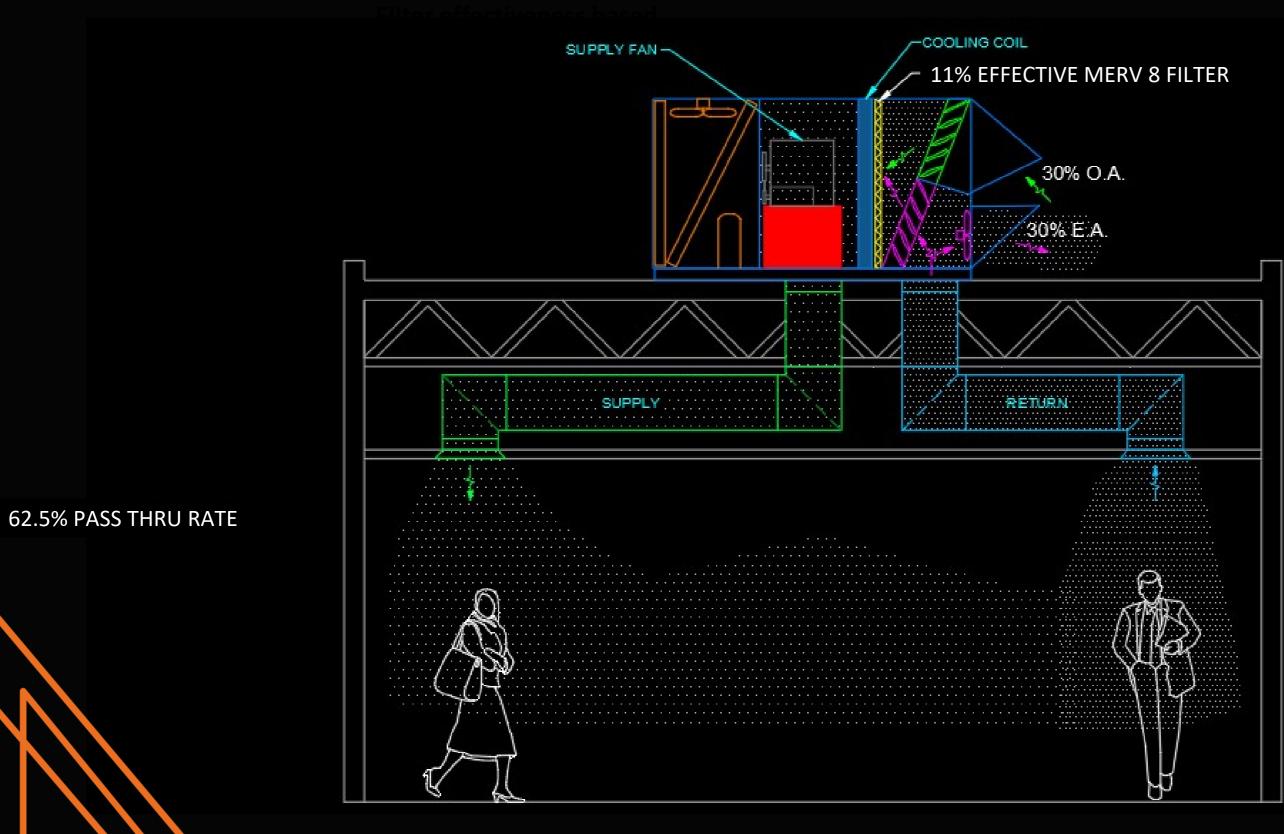

 Reduce # of virus particles in the space • Reduce exposure below infectious dose level


3 Main Actionable Steps

 Increase Outside Air Ventilation Rates Increase Filtration Levels Air Sanitization

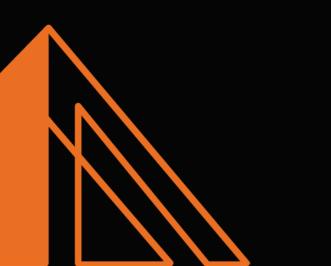
Typical Commercial System – Example System

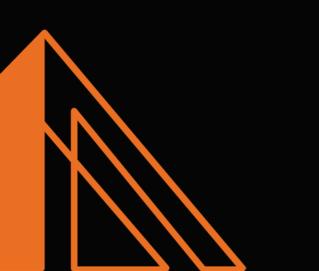
Filter effectiveness based on Swine Flu study


Increase Ventilation Rates

- Demand Control Ventilation (DCV)/CO2/Occupancy Control
- What can we do?
 - Turn off CO2 controls Reduce CO2 setpoints
 - Increase outside air levels
 - Run longer occupied times 2 hrs prior/2 hrs after
- Airside vs Waterside economizers

https://www.ashrae.org/technical-resources/commercial#holistic


Increase Ventilation Rates


Filter effectiveness based on Swine Flu study

Increase Ventilation Rates

- 1000 cfm OA = about 5 tons AC
- Capacity of existing equipment?
- Increasing capacity of new equipment
- Installed Costs
- Energy costs Energy Star/LEED reporting
- Central Air Handlers vs VAV
- Operable Windows

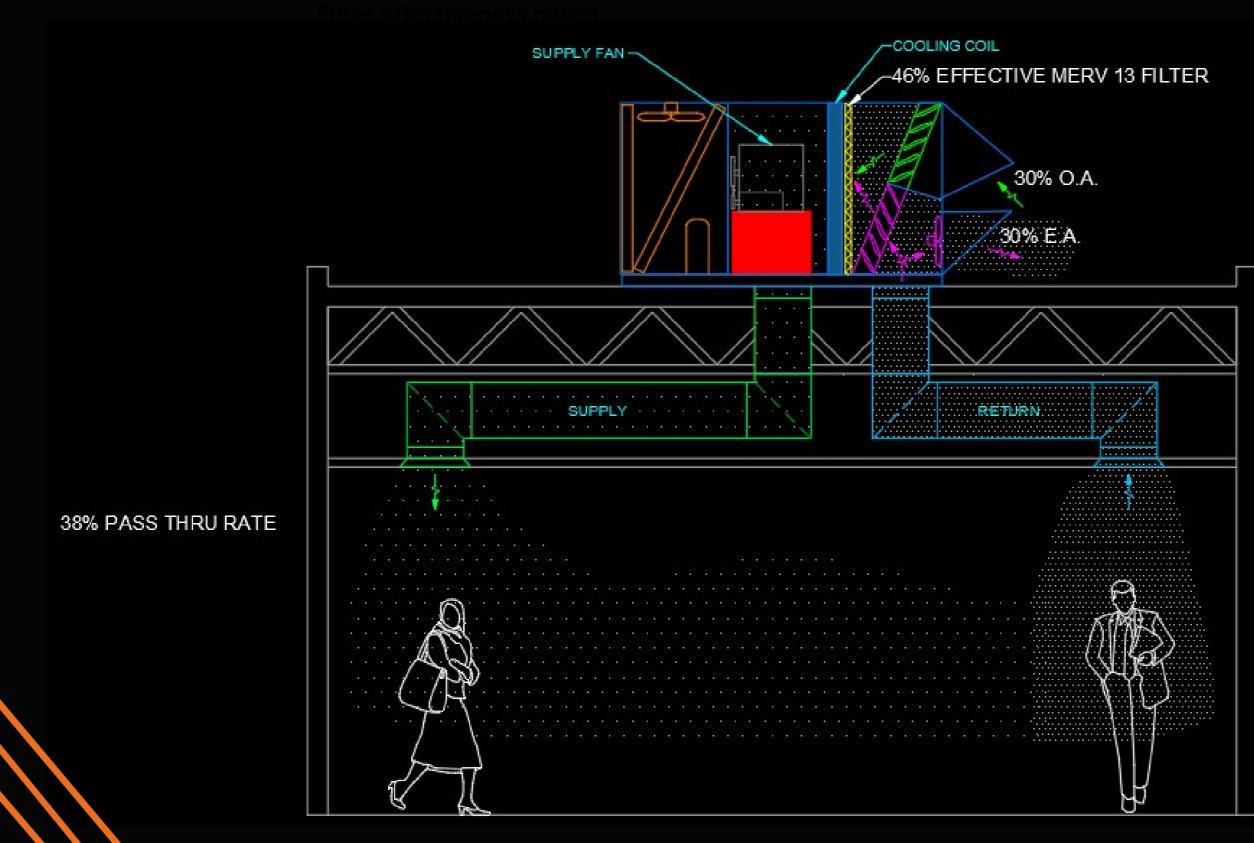
Questions on Ventilation?

- Goal Filter out contaminants
- Typical commercial filters MERV 8
- Review system & unit static to see what level MERV filter can be attained
- Increased static, increased horsepower & energy
- ASHRAE & CDC recommend MERV 13

https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousae rosols 2020.pdf

Standard 52.5 Minimum Efficiency Reporting Value	Dust Spot Efficiency	Arrestance	Typical Controlled Contaminant	Typical Applications and Limitations	Typical Air Filter/Cleaner Type
20					≥99.999% eff. On .1020 pm
20	n/a	n/a	< 0.30 pm particle size	Cleanrooms	Particles
19	n/a	n/a	Virus (unattached)	Radioactive Materials	Particles
18	n/a	n/a	Carbon Dust	Pharmaceutical Man.	Particulates
17	n/a	n/a	All Combustion smoke	Carcinogenetic Materials	≥99.97% eff. On .30 pm Particles
16	n/a	n/a	.30-1.0 pm Particle Size	General Surgery	Bag Filter- Nonsupported
15 14	>95% 90-95%	n/a >98%	All Bacteria Most Tobacco Smoke	Hospital Inpatient Care Smoking Lounges	microfine fiberglass or synthetic media, 12-36 in. deep, 6- 12 pockets Box Filter - Rigid Style Cartridge
13	89-90%	>98%	Proplet Nuceli (Sneeze)	Superior Commercial Buildings	Filters 6 to 12" deep m ay use lofted or paper media.
12	70-75%	>95%	1.0-3.0 pm Particle Size	Superior Residential	Bag Filter- Nonsupported
11	60-65%	>95%	Legionella Humidifier Dust Lead Dust	Better Commercial Buildings	microfine fiberglass or synthetic media, 12-36 in. deep, 6- 12 pockets
10	50-55%	>95%	Milled Flour Auto Emissions	Hospital Laboratories	Box Filter - Rigid Style Cartridge Filters 6 to 12" deep m ay use lofted or paper media.
9	40-45%	>90%	Welding Fumes		
8	30-35%	>90%	3.0-10.0 pm Particle Size	Commercial Buildings	Pleated Filters- Disposable, extended surface area, thick with cotton-polyester blend media, cardboard frame
7	05 000/		Mold Spores	B. U. B. 11. U.I.	cardboard frame
7	25-30%	>90%	Hair Spray	Better Residential	Cartridge Filters- Graded density viscous coated cube or pocket
e	-200/	05.000/	Fabric Protector	In ductorial 30 (and only a s	filters, synthetic media
6	<20%	85-90%	Dusting Aids Cement Dust	Industrial Workplace	Throwaway- Disposable synthetic panel filter.
5	<20%	80-85%	Pudding Mix	Paint Booth Inlet	
4	<20%	75-80%	>10.0 pm Particle Size Pollen	Minimal Filtration	Throwaway- Disposable fiberglass or synthetic panel filter.
3	<20%	70-75%	Dust Mites Sanding Dust	Residential	Washable- Aluminum Mesh
2	<20%	65-70%	Spray Paint Dust		Electrostatic- Self charging
			Textile Fibers	Window A/C Units	woven panel filter.
1	<20%	<65%	Carpet Fibers	i an an an an tha an an tha an a tha	ne en el filtere l

Source: http://radontestingdallas.com/merv-minimum-efficiency-reporting-value-ratings-and-filters/


MERV Rat 1-56 7

https://www.slideshare.net/anjumhashmi61/h1-n1-influenza-virus-its-transmission-indoor-air-role-hvac

Mechanical Air Filters can trap this % of Swine Flu Viruses

ating	%Viruses Arrested (captured)
	1-5%
	6.2%
	7%
	11%
	12%
	46%
	71%
	76%
IEPA)	99.9%
not/aniumbashm	ni61/h1-n1-influonza-virus-ite-transmission-indoor-air-rolo-hvac

Filter effectiveness based on Swine Flu study

- Like to reach MERV 13
- Filter costs are roughly double
- Likely have to change more frequently
- Central air handler vs VAV vs smaller equipment
- Leakage or bypass will reduce filtration rate
- Portable fan filter units

Costs for Steps 1 & 2

Analysis done by ServiDyne for EnergyStar

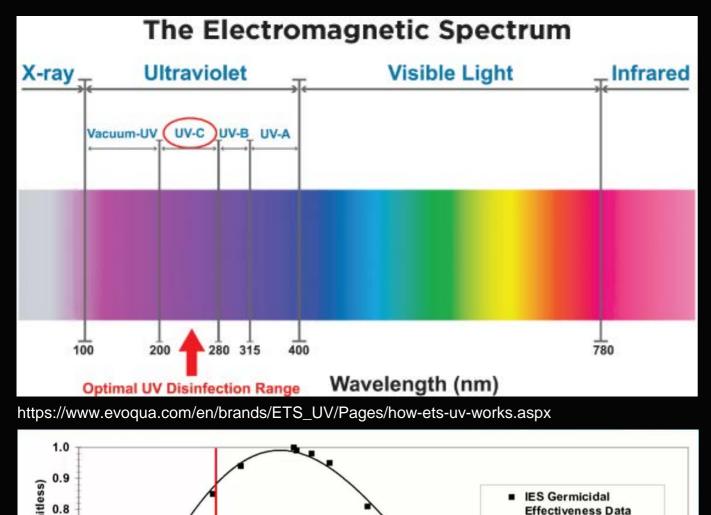
- 2 hrs prior & 2 hrs after
- 50% addition OA

Questions on Filtration?

Air Sanitization - UVGI

- Goal Actively kill pathogens in the airstream
- Most widely accepted technology is UVGI
- Ultra Violet Germicidal Irradiation
- Most Common Options
 - Upper Room
 - In Unit/Duct
- Double blind studies

https://www.ashrae.org/file%20library/about/position%20documents/filtration-and-aircleaning-pd.pdf


Air Sanitization – Other Technologies

- Photocatalytic Oxidation (PCO)
- Bipolar Ionization/Corona Discharge
- Pulsed Xenon (Pulsed UV)
- Vaporized Hydrogen Peroxide
- 405 nm Visible Light
- Far Ultraviolet

- Hit or Miss manufacturers Lack of peer reviewed studies • Higher power outputs than UVC not suitable for occupied spaces 1000 times less effective than UVC • issues w/ large microorganisms

https://www.ashrae.org/file%20library/about/position%20documents/filtration-and-air-cleaning-pd.pdf https://www.ashrae.org/technical-resources/filtration-disinfection

Air Sanitization

Wavelength (nm)

0.7

0.6

0.2

235 240

245 250

255 260

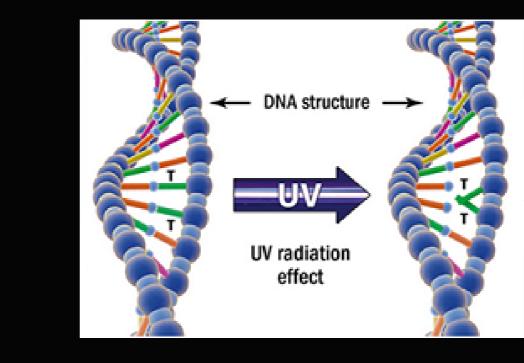
Effe 0.5

cidal 0.4

Per la 0.3

Rel

Interpolated IES Data


Mercury Emission Lines

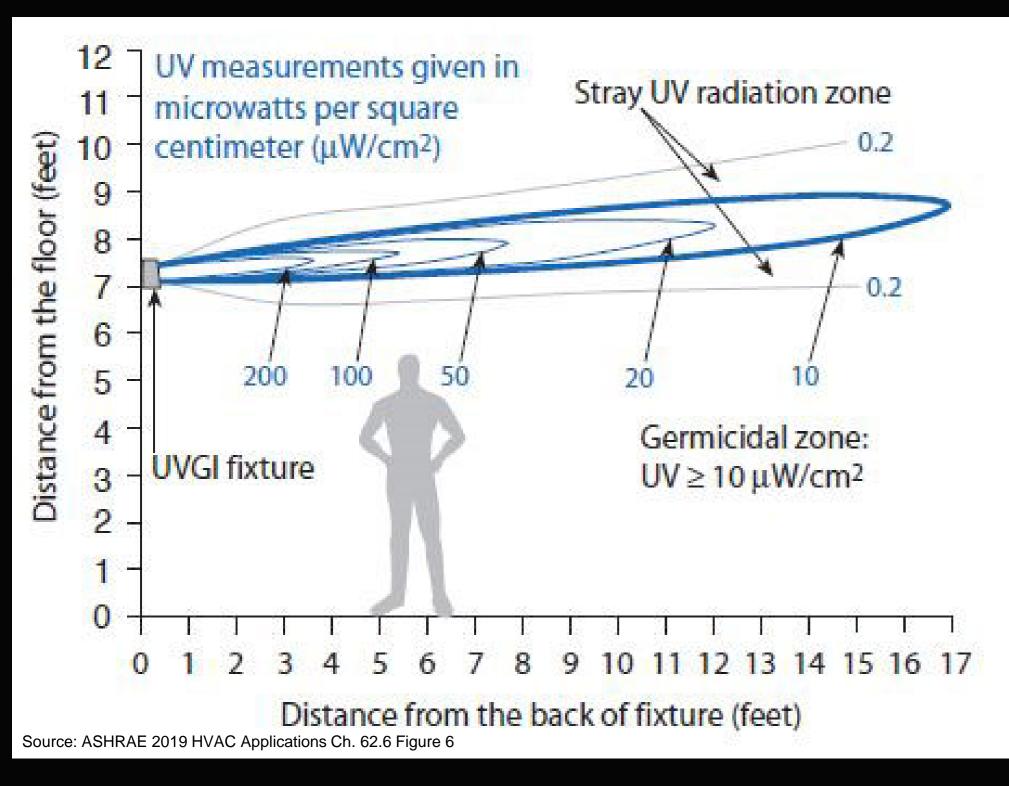
Based on e. coli

bacteria action

310

315

254 nm ~ 85% of optimal Breaks down the DNA

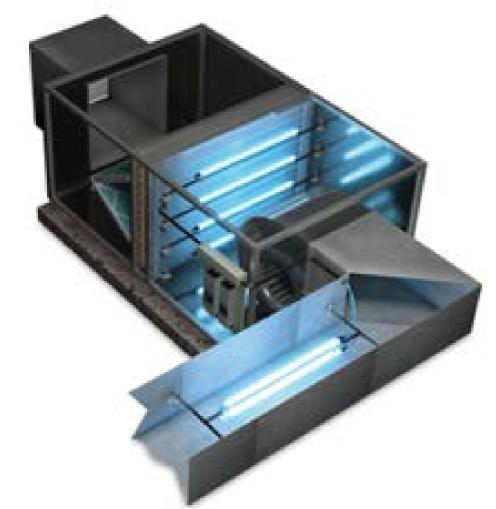

https://media.ies.org/docs/standards/IES-CR-2-20-V1-6d.pdf

When exposing microorganisms to UVC light, the light penetrates through their cell wall and disrupts the structure of their DNA molecules, prohibiting reproduction.

https://www.steril-aire.com/uvc-facts/

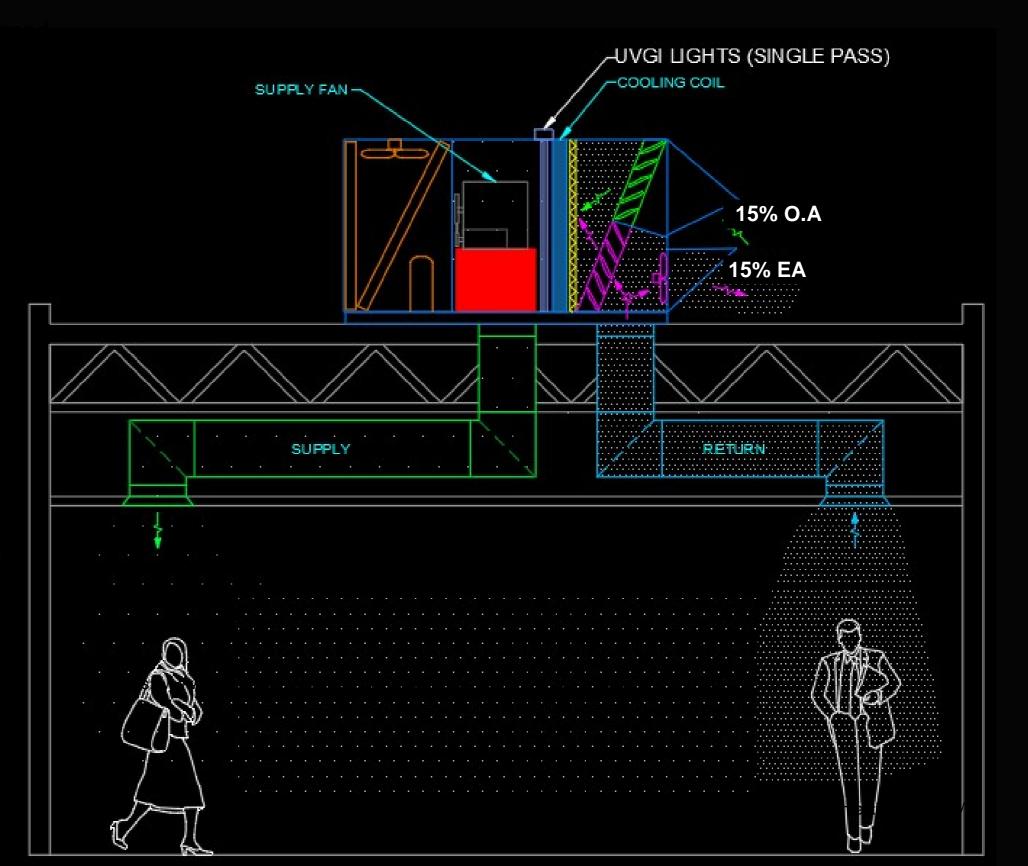
Optimal UVC Wavelength is 265 nm • Low Pressure Mercury UVGI produces

Air Sanitization – Upper Room



Can be modeled using Visual

https://ultraviolet.com/how-to-control-tuberculosis-germicidal-uv-lamps/


Air Sanitization – In Unit/In Duct

https://www.freshaireuv.com/commercial-hvac/

<1% PASS THRU RATE

Air Sanitization

- Installed Costs
 - Upper room ~ \$1000 \$2000 ea. installed AHU - \$.30 - \$.60/cfm ~ \$.5 - \$1/sf
- Bulb replacements
- Problematic retrofitting in units

 -space in units
 -gaskets, wires & filters may not be UV compatible
- Relatively low operational costs

https://www.spokesman.com/stories/2018/mar/25/bend-hospital-using-ultraviolet-light-to-kill-germ/

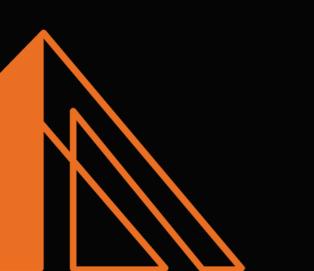
https://www.ashrae.org/file%20library/technical%20resources /covid-19/i-p_a19_ch62_uvairandsurfacetreatment.pdf

Questions on UVGI ?

Air Sanitization – Needlepoint Bipolar Ionization

- Releases charges atoms that attach to micoparticles
- Clusters particles together for more effective filtration
- Disrupts surface proteins rendering pathogens inactive
- Should meet UL 2998 (no ozone creation)
- Considered by CDC to be "emerging technology"

https://www.ashrae.org/technical-resources/filtration-disinfection https://www.ashrae.org/file%20library/about/position% 20documents/filtration-and-air-cleaning-pd.pdf https://globalplasmasolutions.com/

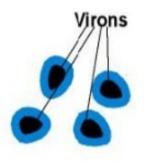

Air Sanitization – Needlepoint Bipolar Ionization

- 5 10 yr life
- Installed costs \$.40 \$.70/sf
- More flexible options on installation
 - can go where UVGI can't

• ASHRAE - Convincing scientifically-rigorous, peer-reviewed studies do not currently exist on this emerging technology; manufacturer data should be carefully considered.

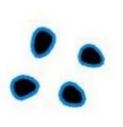
https://www.ashrae.org/technical-resources/filtration-disinfection https://www.ashrae.org/file%20library/about/position%20documents/filtration-and-air-cleaning-pd.pdf

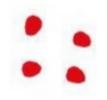
Questions on Bi-Polar Ionization ?



Humidity Control

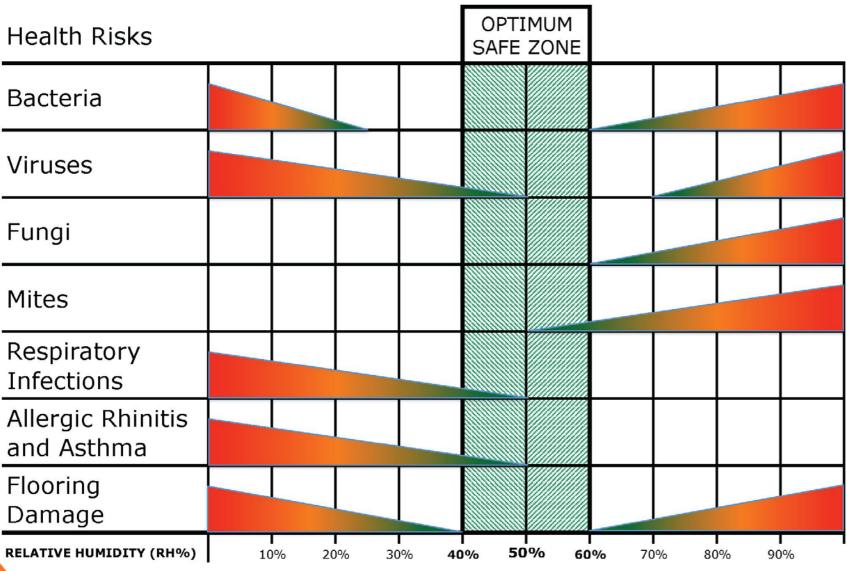
- Goal provide unfavorable conditions for bacteria, viruses, etc.
- Evaporation Rate
- Low humidity allows droplet to stay airborne longer
- Cilia hairs in airways shed pathogens better in higher humidity


Large Infectious droplets Small Infectious droplets Infectious Droplet Nuclei



. Mucus/water encased Viruses are aerosolized by the infector or by toilet water. These quickly fall to the ground after traveling up to 1-3 feet.

Stages of Infectious Droplets & Droplet Nuclei



- 2. Mucus/water coating starts to evaporate. These will travel 3-5 feet before falling to the ground. These droplets can become droplet nuclei.
- Mucus/water coating has 3. totally evaporated leaving only the viron. This is a Droplet Nuclei. Droplet Nuclei are so microscopic that they can float in the air indefinitely.

https://www.youtube.com/watch?v=WZSKoNGTB60&feature=youtu.be

Humidity Control

OPTIMUM RELATIVE HUMIDITY FOR MINIMISING ADVERSE HEALTH AFFECTS

- - Medical Offices

urce: Arundel A, Sterling E, Biggin J, et al - Indirect Health Effects of Relative Humidity in Indoor Environments - Environmental Health Perspectives Vol 65, pp.351-361 1986

 Summer – less of an issues • Winter – main focus • OA drys out our spaces • Typically cost prohibitive • Consider for high risk occupants - Assisted Living - Senior Centers

Address all 3 transmission methods

 Increasing OA & Filtering - easy steps we can do now that have a big effect

- Air Sanitization
 - great long-term strategy, reduce energy consumption
 - UVGI vs Bi-Polar Ionization
- Individual building & system analysis find the specific solutions
- No one size fits all engage experts

This concludes The American Institute of Architects Continuing Education Systems Course

Questions?

